Wave fong	Methud of producing Osci11 ation.	Natune of cimuit.	rmid excitation	Feed.	Aerial excstation	High oscillating potential electrode.
$\begin{gathered} \text { C W. } \\ \text { and } \\ \text { I. C. VI. } \end{gathered}$	Self	Tuned circuit betvieen anode and grid.	Direct inductive.	Series	Direct induetive.	Filament.

Transmitter 3 K is the main I / T transmitting set in Type 37 S The circuit is describer in Admiralty Handbook of $\mathrm{W} / \mathrm{T}(i 931)$ pamagraph 321.
立 ti. Supply. The H.T. supply is from the main nectifying cireuit and is connected dinect to the anode of the L / F valve (3) by the H / F - L / F C.O.S. (O).
13j.\}ament supply. The Λ C. ifilament supply is from the $1 \frac{1}{c}$ kir altemator (38). It is connected to the filament transfomer (29) by two contactis of the H/F - I/F C.O.S. (3). Fheostat (35) contmls the filament voltage of the I / Γ twansmitting valve (3) the voltage being indicated by the voltmeter (33). Two chokes (34) ane fitted to protect the secondary of the filament transfomer (29) firm stray oscillatory cuments.
Oseillatory Circuit. The grid and filament of the transnitting valve (3) are connected to tro fixed tappings on the tapping coil (13). A $=0,000$ ohm grid leak resistance (19) and 4 jar condenser (20) are joined in the grid lead, and an ameter (21) is connected in series with the grid leak resist... ance (19).

Two change over links (10) connect the asrial cincuit either to the tapping coill (13) or to the atriai coupling coil (1En) for the spark attachment. When the links are in the "valve" posi: tion the aerial circuit is connocted to the upper variable tapping (11) and lover variable tapping (12) on the tapping coil (13). The upper and lover tappings ane varied by handes which project through the front of the panels.

The amial is connected to the I / F or H / F set by one contact of the I/F - $H / F C O$ S. (B), The aemial circuit consists of the aerial coil (7) variable tapping coil (13) fine tuning coil (14) and aerial amneter transformor (15). An aerial condenser switch (9) is used to connect a series condenser (8) of 0,25 jars in series vith the aerial in ligr of the aerial coil (7). The condenser is used vhen transmitting on frequencies above $300 \mathrm{kc} / \mathrm{s}$. The aerial cireuit is tuned by adjusting the variable tap on the aerial coil (7) and the two variable taps on the tapping coil (13); all three are adjusted by handles on the front of the panels,

Fine tuning adjustments of the aerial circuit. ame thade on the fine tiuning coil (14) the handle of which is fitted with a veeder countor gear which records the

Fig.f.

TRANSMITTRR $3 \mathrm{~K}, \mathrm{~L} / \mathrm{F}$ (CONT。)

to the recoiving instruments in the main bay and the auxiliary aerial to the receiving instruments in the second bay. In this case the monse key circuit is also roxdified as described under D.C. auxiliary circuits (Page Rof. RFII)
Tuning: A tuning chart, applicable to each set, tuned with an approxirnate jar aerial, is supplied, Set the aerial circuit adjustments given on this chart to the required frequency Place the wavemeter matual near the asmial coil (7) and after obtaining aerial current, readjust the eerial circuit for the required frequency. Rough tuning adjustments are made on the arrial coil (7) and fine tuming on the fine tuning coil (14) The filament tapping is fixed, but variations of its relative positition are made by the upper tap (11) and lover tap (12) above and belon, keeping the total inductance constant. This should be adjusted to give maximum aerial cumont, and minimun anode cument. The former is indicated on the aerial ammeter (13) and the latier on the anode ammeter (22).

Tuning should be campied out with decreased input voltage.

Frequencies botveen $800 \mathrm{kc} / \mathrm{s}$. and 1235 kc / s. a range higher than that for which the set was designed (i, e. , $370 \mathrm{kc} / \mathrm{s}$.) can be obtained by combining the upper tap (11) and lover tap (12) at a cormon point. The input voltage should not exceed 120 volts when using a) kc / s, and 70 volts at $1934 \mathrm{kc} / \mathrm{s}$ or damage may be done. A full explanation and description of this vill be found in the Admiralty Handbook of W/T (1921) paragraphs 713 and 714.

Fig. i

CONDENSER AND COIL IN SERIES.

CONDENSER AND COIL IN PARALLEL

TRANSMITTER $3 \mathrm{~K} ; \mathrm{H} / \mathrm{T}$ 。

Wave: fom	Method of pnoducing oscillation	Nature of cimeuit	rmid excitation	Feed	Aental excitation.	High oscillating potential electrode.
I. C W	Sele	Tuned cimuit, britween anode and grid.	Direct capacitive	Parallel	Mutual inductive	Anode

Reference:- Admiralty Handbook of W / T (1931) pacagraph 712.
Transmitter aKS is the H/F attachment fitteed with Type 37. The transmitier is mounted in a. separate panel adjacent to the rectifying panel (see figune q) and is marked Panel 3;s. H.T Supply The H.T supply is from the main rectifying circuit and is connected to the $3 \mathrm{~K} \mathrm{H} / \mathrm{F}$ oscillatory circuit by the I/F - H/F C.O.S (3) through a 850 mic anode choke (50) to the anode of the H / F transmitifing valve (4) and anode blocking condenser (49). As a single NT 4 A valve is used the pover supply to the transmitter should not exceed 1 kV . The primary voltage thervfore should noti exceed 100 volts.
Fiilament Supply. The A.C filament suppiy is from the $1 \frac{1}{\mathrm{~A}} \mathrm{~kW}$ motor alternator (83). It is comected to the filament transformer (O) by two contacts of the $\mathrm{H} / \mathrm{F}-\mathrm{L} / \mathrm{F}$ C. O.S (6) . The filament voltage is controlled by a 2 ohm adjustable resistance (54). A voltmeter (52) is connected across the fill. ament to indicate the voltage on the valve. The condenser (5?) is connected across the voltmeter (E2) to act as an R / F by pass.
Oscillatory Circuit. The oscillatory circuit consists of the anode condenser (49) indicating lamp and adjustable shunt (46) primary coupling coil (45) and a variable tubular condenser (48). The circuit can be connected either in series or parailel by means of links (47). With the links in the parallel position (figure j) the 0,05 jar variable condenser (48) is connected across the 9 mic ank justable primary (45) of the coupling unit. In the series position (figure i) the variable conden ser (48) and primary coil (4E) are connected in series. The indicating lamp and adjustable shunt (43) take the place of an armeter in the circuit. The two types of oscillatory circuit are used to obtain a greater frequency range. In parallel the frequency range is approximately 5770 to 18750 kc / s and in series 10,30 to $2 \hat{2}, 000 \mathrm{kc} / \mathrm{s}$. A grid leak of 10,000 ohms is connected betveen the grid and filament to earth,
Aerial circuit. The main Type 37 aerial is used for this transmitter, and is connected to the trans. mitter by one contact of the $\mathrm{H} / \mathrm{F} \cdots \mathrm{I} / \mathrm{FCCO} . \mathrm{S}$. (8) A send-receive magnetic svitith (43) is connected in the aerial circuit. The circuit is untuned and consists of a two mic fixed coil (43) and ammeter (44). The fixed coil (42) is the movable portion of the coupling unit, the defree of coupling is obtained by altering the distance between the
fixed coil (43) and the primary coil (45). D. C Auxiliary Circuit. The D. C. auxiliary circuit is described on page R55. Tuning Set the links (47) to the series or parallel position according to the frequency required, as described above. The vavemeter
 the primary coil (45). Coarse tuning adjustments are made on the primary coil (45) and final adjustments are made on the variable condenser (48). The aerial coupling should be adjusted to give maximum aerial current, and then slightly reduced for the best position.

TRANSMITTER 6F。

Transmitter है is a spark attachment and in special cases is fitted vith Type 37. The circuits and description of this transmitter an found on page ORE.

Fig.k.

RFB
R52
TYPE 37S

(这)
(2:

Fig. l

TRANSMENTER 4 H 。

$\begin{aligned} & \text { Wave } \\ & \text { Erm } \end{aligned}$	Method of producing oscillation.	Nature of cireuit	$\begin{gathered} \text { Grid } \\ \text { excitation } \end{gathered}$	Feed	Aeria. 1 excitation	High oscillating potential electrode.
I. C. $\%$	Self	Tuned circuit between ancde and grid	Direst VNJUCTIVE	Series	Mutual INJUCTIVE	Ancde

Transmitter 4 H is the low prwer I.C W, transmitter fitted in conjunction with Type 37 and Type 44. The transmitter is designed to work from the ship's mains or from a 6 volt battery, when the mains supply is not available. The COS. (31) connects either to the transmitter. Ho To Supply Where the transmitter is fitted in conjunction with Type 37 the mains supply is from bcard distrituting 7 may through the switch (123) and fuses(129) to one side of a. C.O.So (81). This switch is marked "100 vclt emergenoy supply". With Type 44 the mains supply is from bcard 2J. Where the ship's mains do not exceed 100 volts, batteries may be switched in series with them to increase the voltage when extra rang is required. The emergency supply is from a 6 volt filament battery (110) or (111)across the morse key(102)and an induction coil(30). The secondary of this coil is connected to one side of the C.O.S. (81)
Filament Supply, The filament supply is from one of two 6 volt katiteries (110)and (111). The fila-ments of the valves(133)and(134)are in parallel, and the voltage of coth controlled by the rheostat (120). A voltmeter(119) is connected across the supply to indicate the voltage on koth valves. Oscillatory Circuits. This consists of a combination of valve(133) and a divided circuit tuned to the required radio-frequency, and valve(134) with a similar circuit tuned to about 1995 cycles to give the I.C.W. note. These circuit, are explained in Admiralty Fandkook of W/T (1931) paragraph $654(4)$. It should be ncted that valve(134) is not absolutely essential, and, in emergency, it is possible to transmit without it,
A/F Circuit, The centre contacts of the C.O.S. (81) are connected thrcugh two chokes (151) to the ancle and grid of the valve(13A), the magnetic key (152) making and kreaking the circuit. The 15-jar fixed condenser (82) and (150) are connected acrass the centre contacts of the C.O.S. (81) and the 0,38 henry chokes (101) respectively.
F/F Circuit, The ancde and grid of the valve(134)are connected through two varicmeter 12.65 mic in-ductances(147) and two 130 mic inductances(149)(if transmitting below $850 \mathrm{kc} / \mathrm{s}$) to the anode and grid of the valve(133). The variable 0.26 jar condenser (146) is connected across them, The condenser (146) and coils(147) are mounted in tandem, and are operated by a single control, which consists of an arm which moves over a quadrant marked in degrees to facilitate setting of any particular wave frequency. Adjustable soresed stops are provided on the quadrant. They can be set to any position sc that quick wave changing may be carried cut.

A 3 prle range switch(148)connsct a 130 mic inductance (149)in each side of the circuit, and a 65 mic inductance in the aerial circuit, when teansmitting below $850 \mathrm{kc} / \mathrm{s}$. To further increase the frequency range a $0.2 \overline{0}$ jar condenser (145) can be connected in parallel with the variable condenser (146) by the switch (144). The condenser (145) and switch(144) are part of the 4 H tuning attachment.
Aerial Circuit. The auxiliary aerial is used for transmitter 4 H with one contact of the 4 H magnetic key(152)used as a "send-receive"switch. The aerial consists of the adjustable coil(138)aerial fine tuning coill(129)arrial tuning coil(140)pea lamp (141)fixed coil(142) and coupling coil(143). The adjustable crill(138) is a 500 mic coil tapped at 100 and 200 mies or it can re shorted. This coil is used to octain a greater frequency range than that for which the transmitter was designed. It forms part of the 4 H tuning attachment. The fixed coill(142) is connected in the circuit by the 3 pole range switch(148) and is used for frequencies kelow $850 \mathrm{kc} / \mathrm{s}$. The pea lamp(141)takes the place of an aumster. It should be noted that if this lamp is broken or not sorewed home, there will ke a kreak in the transmitting aerial circuit, Tuning. The tuning of the A/F circuit is fixed. The R/F circuit is tuned ky means of the variometer inductance (147) and variable condenser (145). The aerial should be disconnected. The range switch(148)set to the position covering the frequency required and if belon $500 \mathrm{kc} / \mathrm{s}$. the condenser(145)and adjustable coil(138)switched into the circuit. After the required frequency is obtained, connect the aerial and adjust the aerial circuit for maximum brilliancy in the pea lamp(141)。
Signalling Circuit. A magnetic key(152) is operated by the morse key (102) when the C.O.Sc (103) on board 2 K controlling is made to the 4 H position. The supply for this circuit is from the 6 volt filament battery (110) or (111).

Fig.n

D.C. AJXILIARY CTRCJTIS.

The supply for the D.C. auxiliary circuits is from the board distributing 7 vay. Boand distributing 7 vay is fed from board tuse 3 vay through a pair of fuzes (73) A main D. P. switch (153) controls the supply of six subsidiary DP, switches (121 to 123) see figures a and p These svitches control supplies to:-
(1) Transmittor
(2) Signaliing Cimuits,
(3) Lights
(4) Cimculator and fans
(5) Radiator
(3) Charging

Board F controlling is supplied thmugh the double pole C. O.S. (121) and two fuses (127), with a control switch (117) in the positive lead, this switch thenefore controls the whole $D C$ auxitiany and operating circuits. When the control switch (117) is made and the ecreen door safoty svitch((59) closed, the blover motor (103) starts, the rectifying spritech (27) completes the secondary supply to the rectifier valves filaments, and the filament switch (3A) completes the A C supply to the fila ment transiomers (28), and (29) or ((3). It also corpletes the supply to the circuit of the mag netic key (58), the bobbin of which is then energised as soon as the monse key (102) is pressed The operating switch (13), fire control listening through switch (183), fuxilfary ambal switch (135) and the H / F send-receive switch (42) une connected across the back contacts of the monse key (102) and are shorted when the key is at rest. OnIy the lamps (118) are in the circuit and winl themefone burn at full brilliancy.

When the morse key (102) is pressed the back contacts of the kyy are broken, and the shom: removed. The circuit is then through the svitches (18) (185) (123) which ane in parallel, on the H/F send-receive svitch (42), according to the position of the I/F. $\mathrm{V} / \mathrm{FCOS}$ (1) The larps (118) being in series with the bobbins of these svitches, become dim Where the set is fitted for two operatons, the morse key (103) is fitted with a remote control attachment. This consists of a bobbin and amature fitted on the key (102); supply is fed from the boand distributing 7 way, through? a lamp and tumbler switch, the circuit being completed by an additional monse key fatted in my posit. tion from which the set is remote controlled

An additional pair of fuses (137) is connected in the supply of the P/C listening thmough svitch (133). The switch and fuses are fitted in the fire control W/T office

A key C. O.S. (103) connects the morse key to either the 'lype 37 magnetife key (58) or the 4 H magnetic key (152). In the latter position the operating switich (18) F / C Iistening through switich (123) and auxiliary aemial switch (16) are not in the circuit. A swittch linked to the C O © (10:2) automatically changes the L/F receiving instruments to main or auxitiary carial as the morse key (10?) is changed from the main set to the 1 H , except in the case where there ane ivn operatons,
 svitch (42) in lieu of the magnetic switches (18) (125) and (1?3). The paraine]. Ianps (4i) ame in. series with the magnetic switch (42) and are inserted to compensate for the resistance of the svitches (18) (135) and (133).

EATTRRY OUTPITS AND CHARGING OTROUITS.

There are various battery outfitis and changing amrangements fitted vith Type aHs They depend on :
(1) Where the set is fitted.
(2) Type of recoiving valves used
(3) Any set fitted in conjumetion.

A description of these various amangements will be found on page NBR.
Fig. p

Fig.q

Figt

Date of design:-
Frequency range:-
Power supply:-

Vaive used:-
Asscciated wavereters:-
Approximate rarge in miles:- -
1933.

3000-20000 kc/s.
H.T. 3 kN motor alternator.

Filament. $1 \frac{1}{\mathrm{~d}} \mathrm{~kW}$ motor alternatcr.
N11
F7 and 38 or $\$ 56$.
World wide at times.

Wave form	Method of producins oscillation.	Nature of circuit	Trid excitation	Feed	Aerial excitation	High oscillating potential electrode.
$\begin{gathered} C_{0} W_{0} \\ \text { or } \\ I_{0}, C_{0} \cdot W_{0} \end{gathered}$	Self	Tuned eircuit between anode and grid.	Direct inductive	Series	Capacitive	Anode

Reference:.. Admiralty Handkook of W / T (1931) paragraph 626.
In order to improve the performance, particularly in the matter of frequency stakility, of Type 375 on H / T, panel 3 KS has been redesigned. The new panel is called 3 M and occupies the same relative position in the set, which, when so modified, is known as Type 37 M .

A terminal koard mounted on the panel is so arranged that, with the exception of the $\mathrm{H}_{\mathrm{o}} \mathrm{T}$. supply, the wiring to the remainder of the set is unaltered.

The modified $\mathrm{H}_{0} \mathrm{~T}_{\text {。 }}$ supply arrangements are shown in figure cc. As the maximum voltage which can te applied to a NT1 valve is approximately 2000 volts the normal $H_{0} T_{0}$ voltage used for L / E transmissions is reduced ky connecting a step down transformer (173) in the A.C. supply to the main transformer ($\overline{\boxed{ } 7}$) when using $\mathrm{H} / \mathrm{F}_{0}$ This transformer (173) is switched into or out of circuit ky an additional contact on the main $L / E-H / F C_{0} O_{0} S_{0}(6)$. The primary of the step down transformer (173) is permanently connected across the $A_{0} C_{0}$ output from the alternator. In the L / F position the secondary is on open circuit and only a small magnetising current will flow through the primary.

MODIFIED POWER SUPPLY

Figec.
The oscillatory circuit (see figure hh.) consists of a variable condenser (171) with its two halves in parallel siving a maximum capacity of 320 cms , and one of a series of four plug-in coils. The latter are specially designed to prevent frequency drift as the coil kecomes heated ky the oscillatory current.

The frequency ranges of the four coils are as follows:-

Frequency range.			Coil.
2,900 to $6,900 \mathrm{kc} / \mathrm{s}_{0}$	9 A	No. of turns.	
5,500 to $12,000 \mathrm{"}$	4 A	9	
7,500 to $13,000 \mathrm{"}$	2 A	4	
15,000 to $21,000 \mathrm{"}$	1 A	2	

It may be found that when using Coil 9A the circuit will not oscillate over the whole range of the tuning condenser (171). To okviate these "klind spots" the centre (F. T.) tapping on the coil should be moved one turn nearer the grid end of the coil.

The grid of the valve (4) is insulated from the $H_{0} T$ osupply ky the oondenser (172) and a grid leak resistance (51) of 10,000 ohms is connected ketween grid and filament. The primary tuning coil (170) is earthed at its centre point through the condenser (175) which also acts as a R / E ky pass condenser aeross the H. Tosupply. The primary and aerial circuits are coupled ky means of the small fixed condenser (169).

The aerial circuit consists of a variakle tuning condenser (168), a tapped tuning coil (43) and a series parallel switch (107) which connects them in series or parallel as desired.

A wavemeter coupling tar (153) is fixed near the primary coil (177) 。 The amount of coup ling ketween the primary circuit and the wavemeter is controlled ky the variable condenser (154).

Operation and Tuning.

1. Set the L/E-H/E CoO. S_{0} (6) to $\mathrm{mH} / \mathrm{F} \mathrm{F}^{\prime}$.
2. Plug in the appropriate tuning coil (170) for the frequency required.
3. Set the filament voltage to the gorrect value for the NTI valve (4) ky means of the rheostat (54) and adjust the output from the Ho To alternator to a value not greater than 1.40 volts.
4. Connect the appropriate wavemeter to the terminals (155) and (156).
5. Press the transmitting key and measure the wave frequency. If incorrect, adjust the primary tuning condenser (171) until the required frequency is obtained. To ensure a suitable current in the wavemeter it will probably te necessary to adjust the wavemeter coupling condenser (154). On the higher frequencies a small value and on the lower frequencies a large value of this condenser will ce required.
6. When the correct frequency is obtained in the primary circuit tune the aerial circuit ty adjusting the -aerial tuning condenser (168) and aerial tuning coil (48) until maximum current is obtained in the aerial ammeter (44).

The lower frequencies usually require the "series" position of the seriesparallel switch (168) tut the higher frequencies may require either "series" or "parallel" position according to whether the aerial is electrically equivalent to an even or odd multiple of a quarter wavelength.

\qquad

